

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

The Role of Physiotherapy in Enhancing Balance and Coordination in Individuals with Parkinson's Disease

R. Prasanna Venkatesan ¹

Research Scholar - Ph.D., Department of Physiotherapy, Sunrise University, Alwar, Rajasthan. Email: rpraskn@gmail.com

Prof. Dr. V. Vijayaraj²

Department of Physiotherapy, Sunrise University, Alwar, Rajasthan. Email: drvijayarajphd@gmail.com

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily impairs motor function, significantly affecting the quality of life of those diagnosed. Among its major symptoms, balance and coordination impairments are particularly debilitating, often resulting in frequent falls and injuries. This study highlights the role of physiotherapy as an essential nonpharmacological intervention in the management of PD. Physiotherapy aims to mitigate motor symptoms by improving strength, flexibility, gait, and postural control through structured exercises and therapeutic strategies. Tailored physiotherapy sessions, often incorporating visual and auditory cues, cognitive tasks, and functional mobility training, help enhance coordination and stability. These interventions not only promote physical independence but also support psychological well-being by reducing dependency and fall-related anxiety. Emphasizing practical self-management and continuous support, physiotherapy plays a critical role in maintaining functional autonomy and improving the overall quality of life in individuals with Parkinson's disease.

Keywords: Parkinson's Disease, Physiotherapy, Balance, And Coordination.

I. INTRODUCTION

Parkinson's disease (PD) is a chronic and progressively worsening neurological disorder that primarily impairs motor functions. Individuals diagnosed with PD often experience symptoms such as involuntary shaking (tremors), muscle stiffness (rigidity), slowness in movement (bradykinesia), and challenges in maintaining posture and stability. These motor impairments interfere significantly

with routine daily tasks, limiting independence and diminishing overall quality of life. Among the wide array of motor symptoms, disturbances in balance and coordination are especially concerning, as they heighten the risk of frequent falls and related injuries, including bone fractures. Such incidents not only lead to physical harm but also contribute to emotional distress and increased healthcare needs, further complicating the lives of those affected. The progression of these symptoms requires comprehensive medical management and rehabilitation strategies to help patients maintain mobility and prevent serious complications. Addressing these issues is essential for improving patient safety and promoting long-term well-being in individuals with PD [1].

Parkinson's Disease: A Brief Overview: Parkinson's disease involves the gradual breakdown of neurons that produce dopamine, primarily within a region of the brain called the substantia nigra. This decline in dopamine levels disrupts the brain's ability to regulate movement, resulting in various motor symptoms. Common manifestations include uncontrollable shaking, slowed physical movements (bradykinesia), stiffness in muscles, and impaired balance or coordination. These motor impairments can interfere with both voluntary and automatic muscle activities, making routine tasks such as walking, getting dressed, and eating increasingly difficult for affected individuals. Balance problems in Parkinson's patients are often exacerbated by muscle stiffness, tremors, and an impaired sense of posture and proprioception. As a result, these individuals experience difficulty in maintaining an upright posture, making them more susceptible to falls. Coordinating movement becomes increasingly challenging due to the loss of fine motor control, further complicating tasks requiring dexterity and coordination. Over time, these issues result in a decreased level of independence and an increased reliance on caregivers [2].

The Role of Physiotherapy in Parkinson's Disease: Physiotherapy plays a vital role in managing Parkinson's disease by targeting motor impairments through structured exercises and therapeutic strategies aimed at improving balance, flexibility, strength, and movement coordination. Its central objective is to support mobility, minimize symptom progression, and lower the risk of falls. Physiotherapists adopt diverse approaches, including gait training, functional movement enhancement, balance exercises, and muscle-strengthening routines to address the challenges posed by the disease. Ultimately, physiotherapy strives to help individuals with Parkinson's retain their independence and functional abilities for an extended period, thereby enhancing their overall quality of life. Therapists frequently utilize a combination of conventional exercise routines and targeted interventions tailored for individuals with Parkinson's disease. These strategies often incorporate visual and auditory prompts to enhance motor coordination and movement efficiency. Additionally, therapy sessions may include activities that engage both cognitive and physical functions, promoting overall neurological health. Physiotherapists are also essential in guiding patients and their caregivers through practical self-management techniques, which are instrumental in reducing the risk of falls and maintaining independence in daily life [3].

Challenges in Balance and Coordination in Parkinson's Disease: Individuals with Parkinson's disease frequently face challenges related to balance and coordination, often struggling with postural instability and maintaining an upright stance. These difficulties stem from a combination of motor

and non-motor manifestations of the condition. On the motor side, symptoms like tremors, muscle stiffness, and slowed movements hinder smooth and controlled bodily actions. Additionally, nonmotor issues such as impaired vision, cognitive decline, and dysfunctions within the autonomic nervous system further disrupt the body's ability to stay balanced and coordinated during movement. Postural instability arises when the body's center of gravity moves out of its normal alignment, resulting in challenges with maintaining balance, particularly during intricate or coordinated activities. This condition is frequently associated with a "stooped" or "frozen" posture, where individuals exhibit a forward-bent stance that becomes difficult to adjust. In addition to balance issues, impaired coordination further complicates daily tasks that demand accuracy and timing, such as fastening buttons or walking steadily in a straight path. Falls are one of the most debilitating consequences of balance and coordination deficits in PD patients. They can cause fractures, head injuries, and an overall decrease in functional ability. Falls are often precipitated by "freezing of gait," a phenomenon where patients experience sudden, temporary episodes of immobility, particularly when initiating movement, turning, or navigating obstacles. The fear of falling, combined with the actual experience of falls, further limits patients' confidence and willingness to engage in daily activities [4].

Physiotherapy Interventions for Improving Balance: Various therapeutic approaches target the underlying causes of postural instability, with the goal of enhancing overall stability. One of the most commonly used techniques is balance training exercises, which include activities that improve both static and dynamic balance. For example, patients may practice standing on one leg, performing weight-shifting exercises, or using a balance board to stimulate the body's proprioceptive systems. Enhancing the strength of lower limb and core muscles plays a vital role in maintaining good posture and reducing the risk of falls. Exercises like squats, lunges, leg lifts, and bridges are particularly effective in building muscular strength, which is necessary for supporting the body during movement and helping it remain upright. A strong core contributes significantly to stability and balance, aiding in everyday actions such as standing, sitting, and walking by providing better control and coordination of body movements. Postural control exercises play a vital role in enhancing balance, particularly in individuals with conditions like Parkinson's disease. These exercises are designed to address and correct abnormal postures, including the commonly observed forward-flexed stance, by strengthening the muscles involved in maintaining proper upright alignment. Furthermore, they contribute to improving trunk mobility, which tends to be limited as a result of increased muscle stiffness and rigidity associated with the condition [5].

Coordination Training for Parkinson's Disease: Coordination represents a crucial focus in physiotherapy for individuals with Parkinson's disease, as they frequently experience impairments in fine motor control that hinder their ability to carry out coordinated tasks. Therapeutic interventions aim to enhance motor coordination by promoting better muscle group synchronization and retraining the nervous system to facilitate more fluid and controlled movements. These coordination-focused exercises often include structured routines such as patterned stepping, alternating limb movements, and dual-task activities that simultaneously engage both cognitive and motor functions, helping patients regain functional independence and movement efficiency. Dual-task exercises are

particularly beneficial in Parkinson's disease, as they challenge the brain to coordinate movement while also engaging cognitive processes. For example, patients may practice walking while performing a mental task such as counting or reciting a poem. Gait training plays a vital role in improving coordination during rehabilitation for individuals with Parkinson's disease. Patients commonly exhibit a shuffling walk and shortened stride length, which can significantly impair mobility. To address these issues, physiotherapists implement targeted techniques involving external cues. Auditory cues, such as walking in time with a metronome or rhythmic music, assist in regulating pace and rhythm. Similarly, visual cues—like floor markings or obstacles—encourage more deliberate and extended steps. These strategies help individuals enhance motor control, reduce freezing episodes, and promote smoother, more coordinated walking patterns [6].

Specific Physiotherapy Techniques for Parkinson's Disease: A variety of physiotherapy techniques have been designed to manage the symptoms of Parkinson's disease, with one of the most notable being the LSVT Big program. Initially created as a speech therapy tool, this method has since been adapted to target motor functions by encouraging patients to perform large and exaggerated body movements. Such emphasis helps mitigate the typical small steps and rigidity seen in individuals with Parkinson's, aiding in the improvement of coordination and balance. Additionally, movement-based practices like Tai Chi and Yoga have demonstrated benefits in enhancing strength, flexibility, and postural control. These gentle, structured activities align with rehabilitation goals and are often incorporated into therapy plans due to their ability to promote relaxation, alleviate muscle stiffness, and support overall physical and mental health [7].

II. OVERVIEW OF PARKINSON'S DISEASE (PD)

Introduction to Parkinson's Disease: Parkinson's disease (PD) is a long-term neurodegenerative condition characterized by the gradual deterioration of motor control. It is among the most prevalent neurological disorders globally, especially in older adults. The disease is mainly caused by the ongoing loss of dopamine-producing nerve cells located in the substantia nigra region of the brain. Dopamine is essential for regulating smooth and precise muscle activity, and its deficiency results in key symptoms such as tremors, muscle stiffness, slowed movement (bradykinesia), and difficulties with balance and posture. These symptoms progressively hinder the individual's ability to perform everyday tasks, leading to a decline in personal independence and overall well-being.

Pathophysiology of Parkinson's Disease: Parkinson's disease primarily arises due to the gradual loss of dopamine-producing neurons in the substantia nigra, a crucial area within the midbrain. Dopamine serves as a neurotransmitter that facilitates communication with regions of the brain involved in managing movement and coordination. As these neurons deteriorate, dopamine levels in the basal ganglia—a cluster of deep brain structures essential for regulating voluntary motor functions—begin to decline. This deficiency impairs the brain's ability to initiate and control smooth, purposeful movements. Consequently, the disruption in neural communication between the substantia nigra and motor control centers manifests in common motor-related symptoms seen in individuals with Parkinson's disease, such as tremors, muscle rigidity, and slowed movement.

- o **Bradykinesia** (**Slowness of Movement**): This is one of the most debilitating features of Parkinson's disease, affecting both large and small movements. Patients experience difficulty initiating voluntary movements, and their movements become slower and less fluid.
- Rigidity (Muscle Stiffness): Muscle stiffness is commonly seen in PD patients and can be felt in the neck, arms, and legs. This rigidity limits joint mobility and can contribute to discomfort and fatigue.
- Resting Tremors: Patients may experience involuntary shaking or trembling of the hands, arms, or legs, especially when they are at rest. Tremors are one of the most recognizable signs of Parkinson's disease but are not present in all patients.
- o **Postural Instability:** Patients with PD often experience difficulty maintaining balance and an increased risk of falls. This is partly due to postural abnormalities, including a forward-leaning posture, as well as the inability to make timely adjustments in balance.

The severity of motor impairments in individuals with Parkinson's disease (PD) can differ significantly from person to person, typically becoming more pronounced as the condition advances. Beyond the hallmark motor issues like tremors, rigidity, and bradykinesia, patients commonly experience a range of non-motor complications. These may include declining cognitive function, emotional disturbances such as depression and anxiety, disrupted sleep patterns, and irregularities in autonomic functions like blood pressure regulation and digestion [8].

III. REVIEW OF LITERATURE

Nowakowska-Lipiec et al. (2021) The research also examined whether providing participants with specific instructions on how to respond to sound cues altered the outcomes. The study involved 36 healthy participants divided into two groups: one group received no instructions regarding the sounds, while the other was instructed to synchronize their steps with the beat of the music. Walking patterns were assessed on a Zebris FDM-S treadmill as participants were exposed to both rhythmic and arrhythmic sounds at varying speeds. The results demonstrated that short-term auditory stimulations significantly affected the walking cycle, influencing frequency, step length, and duration. The most notable changes occurred when the rhythm of the auditory stimuli differed from the participants' normal walking pace. Additionally, the study suggested that giving guidance on responding to rhythmic cues could enhance the effectiveness of gait rehabilitation programs utilizing rhythmic auditory stimulation, highlighting a promising strategy for improving walking patterns through sound-based interventions.

Horin et al. (2021) had investigated the influence of rhythmic auditory cues on motor tasks such as walking, finger tapping, and foot tapping in individuals with Parkinson's disease (PD). Building on this, the study had aimed to determine whether tapping could effectively replace gait tasks in future brain imaging research and to assess whether participants' rhythmic skills or auditory imagery abilities influenced their responses to different cue types. The research had involved 33 PD patients and 24 healthy controls performing tasks at their natural pace without cues (UNCUED), in response to external musical cues (MUSIC), and using self-generated mental cues (MENTAL). The results had shown that music cues caused greater variability across all movement tasks compared to both

mental and no-cue conditions, suggesting that externally produced rhythmic stimuli might disrupt movement consistency more than internally generated ones. Participants had also completed assessments of auditory imagery and rhythm perception using the Bucknell Auditory Imagery Scale (BAIS) and the Beat Alignment Task (BAT), which had been used to explore whether individual differences in auditory processing were related to cue responsiveness. Overall, the findings had highlighted the complex interaction between auditory cueing and motor control in PD and had suggested that tapping tasks could be valuable for further neuroimaging studies of rhythm and movement in this population.

Michelini (2021) was reported to have examined the walking patterns of individuals with lower limb amputations (LLA), noting that such individuals often exhibited asymmetrical gait. It was suggested that this irregularity could stem from inadequate gait training, potentially leading to secondary complications like joint wear and osteoarthritis. The study was described to have focused on testing a wearable biofeedback device intended to improve motor learning by synchronizing walking with an external rhythm. Specifically, the impact of two rhythmic stimulation methods—rhythmic vibrotactile stimulation (RVS) and rhythmic auditory stimulation (RAS)—was evaluated. Both interventions were reportedly tested on able-bodied participants who wore ankle weights to simulate imbalance. It was highlighted that RVS produced statistically significant improvements in STSR, suggesting greater efficacy in enhancing gait symmetry. These findings were interpreted to emphasize the potential of rhythmic stimulation techniques in gait rehabilitation, promoting more balanced walking patterns. The study was concluded to underline the necessity for further research to optimize these biofeedback tools, with the goal of developing affordable and practical solutions to improve mobility and quality of life for people with LLA.

Shaw et al. (2022) were reported to have explored the practicality of implementing a large-scale, multicenter randomized controlled trial aimed at assessing an auditory rhythmical cueing (ARC) program designed to improve gait and balance in stroke survivors. Their pilot study was described to have involved adults who had experienced a stroke within the previous two years and faced mobility challenges related to walking. Key outcomes such as recruitment efficiency, participant retention, adherence, data completeness, and safety were reportedly measured. Out of 59 enrolled participants, data collection was conducted at baseline, six weeks, and ten weeks. However, retention was indicated to have declined to 71%, mainly attributed to COVID-19 disruptions. Attendance rates were reported as high, with the intervention group completing 80% of sessions and the control group 75%. The frequency of falls was mentioned to be similar between groups, and no significant adverse events were associated with the study.

Ling et al. (2022) were reported to have investigated the challenges encountered by stroke survivors, with a particular focus on walking difficulties such as reduced speed and uneven gait patterns. It was noted that traditional physical therapy for stroke patients commonly involved explicit motor learning techniques, including verbal instructions, which were found to sometimes trigger unwanted muscle contractions or increase cognitive demands on patients. To overcome these issues, the researchers were said to have developed a novel vibrotactile cueing device designed to improve walking speed

through indirect stimulation. Furthermore, the cueing group was observed to demonstrate better gait control by avoiding excessive compensatory movements commonly seen in stroke rehabilitation. The findings were interpreted as suggesting that this vibrotactile approach could effectively enhance walking performance in stroke patients while reducing cognitive load, thus offering a promising tool for gait rehabilitation.

McCue et al. (2022) had conducted a study aimed at assessing the effectiveness of an auditory rhythmical cueing (ARC) program designed to improve gait and balance in stroke survivors in both indoor and outdoor settings. They had noted that while previous laboratory research suggested ARC could aid gait recovery after stroke, there was limited evidence regarding its application in everyday environments. To address this gap, the researchers had developed a training program based on insights gathered from physiotherapists and stroke survivors through stakeholder workshops. The study was thus regarded as highlighting the practical potential of ARC gait training for stroke rehabilitation in real-world settings, confirming its feasibility and acceptability among patients and healthcare providers.

Kim et al. (2022) were reported to have investigated the effectiveness of novel rehabilitation methods—action observation learning combined with auditory cueing (AOTAC) and action observation learning alone (AOT)—in enhancing gait performance among stroke survivors with unilateral hemiparesis. The study was said to have involved eighteen participants who were randomly allocated into three groups: AOTAC, AOT, and a control group. It was described that the AOTAC group viewed videos depicting normal walking patterns accompanied by synchronized footstep sounds as auditory cues, while the AOT group observed similar visual stimuli without sounds, and the control group watched unrelated landscape videos. Over a four-week period, each group reportedly underwent thirty-minute training sessions five times per week. Statistical analysis was said to have highlighted that the combined visual and auditory stimuli in the AOTAC method yielded superior enhancement in walking ability, suggesting the importance of multimodal sensory input in stroke rehabilitation. Overall, the study was concluded to demonstrate that integrating auditory cues with action observation could be a more effective strategy for restoring gait function than visual observation alone or no specific gait-related training, providing valuable guidance for designing targeted therapeutic programs to improve mobility in stroke recovery.

Crosby et al. (2022) were reported to have investigated the role of rhythmic auditory stimulation in enhancing temporal gait asymmetry (TGA) in individuals after neurological injuries such as stroke, premised on the natural rhythmicity of walking. Their research was said to have explored how rhythm skills might influence TGA improvement by simulating asymmetry through weights applied to the ankles and thighs of healthy young adults. Participants were reportedly classified according to their rhythm abilities, assessed via beat perception and production tests. Walking was tested under three conditions: a natural baseline, a metronome set at the participant's usual cadence, and a metronome at 90% of that cadence. It was found that most participants exhibited reduced TGA when synchronizing with metronome beats, although no significant difference emerged between those with strong versus weak rhythm skills. However, individuals with poorer rhythm perception were noted to

have difficulty aligning their steps accurately with the beat. The authors reportedly acknowledged that the induced gait asymmetry was less severe than typical post-stroke cases, recommending further research to clarify how rhythm ability differences affect clinical responses to auditory cues. The study was interpreted to underscore both the promise and limitations of rhythmic auditory stimulation in gait rehabilitation.

Burrai et al. (2022) were reported to have conducted a comprehensive review on the impact of rhythmic auditory stimulation (RAS) on patients with Parkinson's disease, a neurodegenerative disorder affecting about two percent of individuals over sixty-five years of age. However, concerns were raised due to the lack of blinding in these trials, which was suggested to weaken the confidence in the quality of evidence and introduce potential bias. Importantly, no adverse effects were reported during the interventions, indicating that RAS was considered a safe approach for this population. The authors emphasized that despite promising results, further rigorous studies were needed, recommending that future research include power analyses and better bias control to enhance the reliability of findings. Overall, Burrai et al. highlighted the potential of rhythmic auditory stimulation as a therapeutic method to improve walking performance in Parkinson's patients, while calling for more detailed investigations to confirm and optimize treatment protocols.

Michelini et al. (2022) were reported to have investigated the effectiveness of biofeedback (BFB) employing real-time sensory cues to improve gait rehabilitation by enhancing synchronization between an individual's walking pattern and an external rhythm. Their study was said to have focused on whether rhythmic stimulation could positively affect the stance time symmetry ratio (STSR), considered a crucial measure of gait balance. They also sought to compare the impacts of two types of rhythmic stimuli: vibrotactile and auditory. The ankle weight was noted to have successfully induced asymmetry in the gait cycle, validating the imbalance model. When rhythmic stimulations (both RVS and RAS) were applied, participants reportedly exhibited significant improvements in STSR and walking cadence compared to the ankle weight condition alone. Other parameters, such as stride length and double support time, were found to remain largely unchanged across conditions. No significant differences were observed between the two types of rhythmic feedback, implying that both vibrotactile and auditory stimulations were equally effective in enhancing certain aspects of gait symmetry and speed. The research was concluded to highlight the potential of biofeedback therapies using rhythmic cues to aid gait rehabilitation without preference for the sensory feedback modality.

IV. RESEARCH METHODOLOGY

This paper presents the research methodology adopted to examine the impact of physiotherapy interventions on balance and coordination in individuals with Parkinson's Disease (PD). Parkinson's is a progressive neurodegenerative disorder that impairs motor function, particularly affecting posture, gait, and movement initiation. Given the limitations of pharmacological treatments in addressing these issues, this study explored physiotherapy as a complementary, non-invasive intervention. A quantitative experimental approach with a pre-test/post-test design was implemented over eight weeks to evaluate functional changes. Participants were purposively selected based on

defined clinical and demographic criteria, ensuring the sample's relevance. Physiotherapy techniques were applied systematically, and objective assessments were conducted using standardized tools such as the Berg Balance Scale, Timed Up and Go (TUG) test, and the Unified Parkinson's Disease Rating Scale (UPDRS). The methodology emphasized ethical considerations, including informed consent and participant safety [9].

The research design focused on within-subject changes to reduce variability and improve statistical reliability. Although no control group was included—due to ethical concerns—the study integrated a three-month follow-up to assess long-term outcomes. This methodological structure, combining evidence-based physiotherapeutic practices with rigorous evaluation, aimed to determine the intervention's effectiveness in enhancing motor abilities and improving overall quality of life for individuals with Parkinson's Disease [10].

V. CONCLUSION

In Parkinson's disease presents a complex set of motor impairments, with balance and coordination issues being particularly detrimental. Physiotherapy emerges as a valuable intervention, offering structured and evidence-based strategies to address these impairments. Through enhancing physical capabilities and promoting independence, physiotherapy significantly contributes to the overall management and quality of life for individuals living with PD.

REFERENCES

- 1. Nowakowska-Lipiec, K., Michnik, R., Niedzwiedź, S., Mańka, A., Twardawa, P., Turner, B., ... & Mitas, A. W. (2021, February). Effect of short-term metro-rhythmic stimulations on gait variability. In *Healthcare* (Vol. 9, No. 2, p. 174). MDPI.
- 2. Horin, A. P., Harrison, E. C., Rawson, K. S., & Earhart, G. M. (2021). Finger tapping as a proxy for gait: similar effects on movement variability during external and self-generated cueing in people with Parkinson's disease and healthy older adults. *Annals of Physical and Rehabilitation Medicine*, 64(4), 101402.
- 3. Michelini, A. (2021). Evaluating the Effectiveness of Rhythmic Vibrotactile and Auditory Stimulation for a Biofeedback Gait Training System for Individuals with Lower Limb Amputation (Master's thesis, University of Toronto (Canada)).
- 4. Shaw, L., McCue, P., Brown, P., Buckley, C., Del Din, S., Francis, R., ... & Moore, S. A. (2022). Auditory rhythmical cueing to improve gait in community-dwelling stroke survivors (ACTIVATE): a pilot randomised controlled trial. *Pilot and Feasibility Studies*, 8(1), 239.
- 5. Ling, J., Yasuda, K., Hayashi, Y., Imamura, S., & Iwata, H. (2022). Development of a vibrotactile cueing device that implicitly increases walking speed during gait training in stroke patients: An observational case series study. *Journal of Medical Engineering & Technology*, 46(1), 25-31.

- 6. McCue, P., Shaw, L., Del Din, S., Hunter, H., Lord, S., Price, C. I., ... & Moore, S. A. (2022). Acceptability and deliverability of an auditory rhythmical cueing (ARC) training programme for use at home and outdoors to improve gait and physical activity post-stroke. *Archives of Physiotherapy*, 12(1),
- 7. Kim, H. M., Son, S. M., & Ko, Y. M. (2022). Effects of Action Observation Training Combied with Auditory Cueing on Gait Ability in Patients with Stroke: A Preliminary Pilot Study. *The Journal of Korean Physical Therapy*, *34*(3), 98-103.
- 8. Crosby, L. D., Chen, J. L., Grahn, J. A., & Patterson, K. K. (2022). The Effect of Rhythm Abilities on Metronome-Cued Walking with an Induced Temporal Gait Asymmetry in Neurotypical Adults. *Journal of Motor Behavior*, 54(3), 267-280.
- 9. Burrai, F., Apuzzo, L., & Zanotti, R. (2022). Effectiveness of rhythmic auditory stimulation on gait in Parkinson disease: a systematic review and meta-analysis. *Holistic Nursing Practice*.
- 10. Michelini, A., Sivasambu, H., & Andrysek, J. (2022). The short-term effects of rhythmic vibrotactile and auditory biofeedback on the gait of individuals after weight-induced asymmetry. *Canadian Prosthetics & Orthotics Journal*, 5(1).